Reconstruction of natural RNA sequences from RNA shape, thermodynamic stability, mutational robustness, and linguistic complexity by evolutionary computation.

نویسندگان

  • N Dromi
  • A Avihoo
  • D Barash
چکیده

The process of designing novel RNA sequences by inverse RNA folding, available in tools such as RNAinverse and InfoRNA, can be thought of as a reconstruction of RNAs from secondary structure. In this reconstruction problem, no physical measures are considered as additional constraints that are independent of structure, aside of the goal to reach the same secondary structure as the input using energy minimization methods. An extension of the reconstruction problem can be formulated since in many cases of natural RNAs, it is desired to analyze the sequence and structure of RNA molecules using various physical quantifiable measures. In prior works that used secondary structure predictions, it has been shown that natural RNAs differ significantly from random RNAs in some of these measures. Thus, we relax the problem of reconstructing RNAs from secondary structure into reconstructing RNAs from shapes, and in turn incorporate physical quantities as constraints. This allows for the design of novel RNA sequences by inverse folding while considering various physical quantities of interest such as thermodynamic stability, mutational robustness, and linguistic complexity. At the expense of altering the number of nucleotides in stems and loops, for example, physical measures can be taken into account. We use evolutionary computation for the new reconstruction problem and illustrate the procedure on various natural RNAs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relation Between RNA Sequences, Structures, and Shapes via Variation Networks

Background: RNA plays key role in many aspects of biological processes and its tertiary structure is critical for its biological function. RNA secondary structure represents various significant portions of RNA tertiary structure. Since the biological function of RNA is concluded indirectly from its primary structure, it would be important to analyze the relations between the RNA sequences and t...

متن کامل

Direct evolution of genetic robustness in microRNA.

Genetic robustness, the invariance of the phenotype in the face of genetic perturbations, can endow the organism with reduced susceptibility to mutations. A large body of work in recent years has focused on the origins, mechanisms, and consequences of robustness in a wide range of biological systems. Despite the apparent prevalence of mutational robustness in nature, however, its evolutionary o...

متن کامل

How Mutational Networks Shape Evolution: Lessons From RNA Models

Recent advances in molecular biology and computation have enabled evolutionary biologists to develop models that explicitly capture molecular structure. By including complex and realistic maps from genotypes to phenotypes, such models are yielding important new insights into evolutionary processes. In particular, computer simulations of evolving RNA structure have inspired a new conceptual fram...

متن کامل

RNAfbinv: an interactive Java application for fragment-based design of RNA sequences

SUMMARY In RNA design problems, it is plausible to assume that the user would be interested in preserving a particular RNA secondary structure motif, or fragment, for biological reasons. The preservation could be in structure or sequence, or both. Thus, the inverse RNA folding problem could benefit from considering fragment constraints. We have developed a new interactive Java application calle...

متن کامل

Congruent evolution of genetic and environmental robustness in micro-RNA.

Genetic robustness, the preservation of an optimal phenotype in the face of mutations, is critical to the understanding of evolution as phenotypically expressed genetic variation is the fuel of natural selection. The origin of genetic robustness, whether it evolves directly by natural selection or it is a correlated byproduct of other phenotypic traits, is, however, unresolved. Examining micro-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomolecular structure & dynamics

دوره 26 1  شماره 

صفحات  -

تاریخ انتشار 2008